Monday, March 16, 2015

Cure for Inflammatory Diseases

Destabilizing Gut Biofilms by Simple Remedies

The intercommunication between the gut flora biofilms, the cells of the immune system juxtaposed with the intestinal endothelium and cryptic bacteria/tissue biofilms produces stable chronic inflammatory disease. Disrupting the gut biofilms may permit a resumption of effective immunity and remission.

Disrupting Biofilms to Treat ASDs

Cristian Stremiz brought to my attention the work of Dr. Anju Usman on the treatment of autism spectrum diseases by attacking inflammatory gut biofilms.

A Panacea

This approach, based on the use of common food components, to attack the gut biofilm matrix of acid polysaccharides, cations and proteins, should be generalizable to most inflammatory diseases. The interventions also provide facile explanations for the utility of numerous traditional cures such as vinegar, fiber, glucosamine, pectin, whey, proteases and probiotics.

Cures Act via Gut Flora Biofilms

There are numerous anecdotal reports of traditional, simple remedies working for essentially all diseases. Tantalizingly, many of these diseases are also occasionally successfully treated with antibiotics. The common thread seems to be the involvement of inflammatory gut flora and perhaps cryptic bacteria residing in the tissues displaying symptoms. Glucosamine works sometimes for arthritis, but little of the glucosamine that is eaten reaches the blood stream and the aching joints that seem to become less inflamed. Vinegar, pectin, and fiber have also been attributed with curative powers, yet none is likely to impact inflamed joints directly. Impacting gut biofilms is much easier to explain.

Biofilms of Bacteria Attached to Acidic Polysaccharides and Divalent Cations

Acidic polysaccharides are produced by bacteria and divalent cations cross-link the polysaccharides into a matrix. The bacteria have agglutinins to attach to the matrix. Gut pathogens produce agglutinins that they use to attach to the heparan sulfate (HS), the predominant acid polysaccharide of the intestinal epithelium. Mast cells of the intestines normally release heparin, which is a mixture of HS fragments, to stick to the agglutinins and block attachment to the HS of the epithelium. Numerous bacterial species form complex communities on the polysaccharide matrix and prevent access by antibiotics. Biofilms require 100X the antibiotic concentrations and a cocktail of different antibiotics to eradicate the bacteria.

Biofilms Disrupted by Competing Acid Polysaccharide Fragments and Cation Chelators

The Achille’s heal of biofilms is the ionic interaction between the acidic polysaccharide and divalent cations. This interaction can be attacked by both small fragments of similar acid oligosaccharides, by organic acids that can solubilize the cations, e.g. acidic acid in vinegar, or by chelators, such as EDTA. All of these treatments can remove the calcium, magnesium and iron that is essential to the matrix. Small molecules, such as glucosamine, chondroitin sulfate fragments, heparin, and pectin, can disrupt biofilms. Molecules that bind to heparin or nucleic acids, e.g. berberine, quinine (tonic), methylene blue, should also be effective in disrupting biofilms. [Note that the similarity between amyloid production and biofilms, means that treatments should overlap.] Lactoferrin is effective, since it both binds iron and binds to acidic polysaccharides via its heparin-binding domains.

Proteases Cleave Agglutinins

Stomach proteases, e.g. pepsin, specifically cleave proteins to release heparin-binding, acidic polysaccharide-binding domains that inhibit biofilm production in the stomach. Subsequently, the basic, antimicrobial peptides and agglutinins are cleaved by proteases, e.g. trypsin, that hydrolyze the binding domains. Eating proteases, such as nattokinase present in fermented soybeans, dissolves intestinal biofilms by attacking the agglutinins. The pathogenic E. coli and avian H5N1 also have these agglutinins. It is, therefore, wise to avoid establishing gut biofilms that can immobilize pathogens.

Probiotics Protect Against Biofilms

Resident gut bacteria that produce organic acids, e.g. lactic acid or acetic acid, provide protection against biofilm formation. Examples are the bacteria present in common forms of fermentation and food preservation, e.g. Lactobacillus sp., and the bacterium present in exclusively breastfed babies, Bifidobacter sp. Formula fed babies rapidly develop inflammatory biofilms, which explains their high rates of intestinal and respiratory diseases, as well as increased rates of inflammatory diseases.

Biofilm Inflammation Results in Inflammatory Bowel Disease, etc.

Gut biofilms support system-wide chronic inflammation that leads to allergies, autoimmune diseases, degenerative diseases and probably cancers. This attach on the gut also produces a leaky gut that supplies the bacteria that a moved by macrophages of the gut to all parts of the body. This may be how Chlamydia pneumoniae colonizes sites of inflammation throughout the body.

Attacking Gut Biofilms Is the First Step in the Treatment of All Inflammatory Diseases

Many inflammtory diseases, e.g. chronic lyme disease, rosacea, may be refractory to treatment with antibiotics, because of the reservoir of bacteria in gut biofilms. Attacks on gut biofilms with relatively non-intrusive treatments, such as vinegar, EDTA, lactoferrin and proteases, may lower the total resident pathogen load and make subsequent antibiotic treatment more effective.
for details click below

No comments:

Post a Comment